Braid group action on the module category of quantum affine algebras

نویسندگان

چکیده

Let $\mathfrak{g}_{0}$ be a simple Lie algebra of type ADE and let $U'_{q}(\mathfrak{g})$ the corresponding untwisted quantum affine algebra. We show that there exists an action braid group $B(\mathfrak{g}_{0})$ on Grothendieck ring $\mathcal{K}_{t}(\mathfrak{g})$ Hernandez-Leclerc’s category $\mathcal{C}_{\mathfrak{g}}^{0}$. Focused case $A_{N-1}$, we construct family monoidal autofunctors $\{\mathcal{S}_{i}\}_{i\in \mathbf{Z}}$ localization $\mathcal{T}_{N}$ finite-dimensional graded modules over quiver Hecke $A_{\infty}$. Under isomorphism between $K(\mathcal{T}_{N})$ $\mathcal{K}_{t}(A^{(1)}_{N-1})$, functors $\{\mathcal{S}_{i}\}_{1\leq i\leq N-1}$ recover $B(A_{N-1})$. investigate further properties these functors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braid Group Action and Quantum Affine Algebras

We lift the lattice of translations in the extended affine Weyl group to a braid group action on the quantum affine algebra. This action fixes the Heisenberg subalgebra pointwise. Loop like generators are found for the algebra which satisfy the relations of Drinfel ′ d's new realization. Coproduct formulas are given and a PBW type basis is constructed. §0. Introduction. The purpose of this pape...

متن کامل

Braid action on derived category of Nakayama algebras

We construct an action of a braid group associated to a complete graph on the derived category of a certain symmetric Nakayama algebra which is also a Brauer star algebra with no exceptional vertex. We connect this action with the affine braid group action on Brauer star algebras defined by Schaps and Zakay-Illouz. We show that for Brauer star algebras with no exceptional vertex, the action is ...

متن کامل

Deformed Commutators on Quantum Group Module-algebras

We construct quantum commutators on module-algebras of quasitriangular Hopf algebras. These are quantum-group covariant, and have generalized antisymmetry and Leibniz properties. If the Hopf algebra is triangular they additionally satisfy a generalized Jacobi identity, turning the modulealgebra into a quantum-Lie algebra. The purpose of this short communication is to present a quantum commutato...

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy. Series A, Mathematical sciences

سال: 2021

ISSN: ['0386-2194']

DOI: https://doi.org/10.3792/pjaa.97.003