Braid group action on the module category of quantum affine algebras
نویسندگان
چکیده
Let $\mathfrak{g}_{0}$ be a simple Lie algebra of type ADE and let $U'_{q}(\mathfrak{g})$ the corresponding untwisted quantum affine algebra. We show that there exists an action braid group $B(\mathfrak{g}_{0})$ on Grothendieck ring $\mathcal{K}_{t}(\mathfrak{g})$ Hernandez-Leclerc’s category $\mathcal{C}_{\mathfrak{g}}^{0}$. Focused case $A_{N-1}$, we construct family monoidal autofunctors $\{\mathcal{S}_{i}\}_{i\in \mathbf{Z}}$ localization $\mathcal{T}_{N}$ finite-dimensional graded modules over quiver Hecke $A_{\infty}$. Under isomorphism between $K(\mathcal{T}_{N})$ $\mathcal{K}_{t}(A^{(1)}_{N-1})$, functors $\{\mathcal{S}_{i}\}_{1\leq i\leq N-1}$ recover $B(A_{N-1})$. investigate further properties these functors.
منابع مشابه
Braid Group Action and Quantum Affine Algebras
We lift the lattice of translations in the extended affine Weyl group to a braid group action on the quantum affine algebra. This action fixes the Heisenberg subalgebra pointwise. Loop like generators are found for the algebra which satisfy the relations of Drinfel ′ d's new realization. Coproduct formulas are given and a PBW type basis is constructed. §0. Introduction. The purpose of this pape...
متن کاملBraid action on derived category of Nakayama algebras
We construct an action of a braid group associated to a complete graph on the derived category of a certain symmetric Nakayama algebra which is also a Brauer star algebra with no exceptional vertex. We connect this action with the affine braid group action on Brauer star algebras defined by Schaps and Zakay-Illouz. We show that for Brauer star algebras with no exceptional vertex, the action is ...
متن کاملDeformed Commutators on Quantum Group Module-algebras
We construct quantum commutators on module-algebras of quasitriangular Hopf algebras. These are quantum-group covariant, and have generalized antisymmetry and Leibniz properties. If the Hopf algebra is triangular they additionally satisfy a generalized Jacobi identity, turning the modulealgebra into a quantum-Lie algebra. The purpose of this short communication is to present a quantum commutato...
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy. Series A, Mathematical sciences
سال: 2021
ISSN: ['0386-2194']
DOI: https://doi.org/10.3792/pjaa.97.003